Synthetic Speech Spoofing Detection using MFCC and SVM

نویسنده

  • Anagha Sonawane
چکیده

Nowadays synthetic voice is frequently used to defraud a biometric access system which are speaker recognition based. This paper presents synthetic speech detection in automatic speaker verification system (ASV) for the purpose of spoof detection. Feature extraction is done by canonical Mel Frequency Cepstral Coefficients (MFCC) algorithm and classification of natural and synthetic voice are done using Support Vector Machine (SVM). Several experiments are carried out, showing that nonlinear SVM performs better than linear SVM.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relative phase information for detecting human speech and spoofed speech

The detection of human and spoofed (synthetic/converted) speech has started to receive more attention. In this study, relative phase information extracted from a Fourier spectrum is used to detect human and spoofed speech. Because original/natural phase information is almost entirely lost in spoofed speech using current synthesis/conversion techniques, a modified group delay based feature, the ...

متن کامل

Classifiers for synthetic speech detection: a comparison

Automatic speaker verification (ASV) systems are highly vulnerable against spoofing attacks, also known as imposture. With recent developments in speech synthesis and voice conversion technology, it has become important to detect synthesized or voice-converted speech for the security of ASV systems. In this paper, we compare five different classifiers used in speaker recognition to detect synth...

متن کامل

Voice Activity Detection Using MFCC Features and Support Vector Machine

We define voice activity detection (VAD) as a binary classification problem and solve it using the support vector machine (SVM). Challenges in SVM-based approach include selection of representative training segments, selection of features, normalization of the features, and post-processing of the frame-level decisions. We propose to construct a SVMVAD using MFCC features because they capture th...

متن کامل

Using Deep Learning for Detecting Spoofing Attacks on Speech Signals

It is well known that speaker verification systems are subject to spoofing attacks. The Automatic Speaker Verification Spoofing and Countermeasures Challenge – ASVSpoof2015 – provides a standard spoofing database, containing attacks based on synthetic speech, along with a protocol for experiments. This paper describes CPqD’s systems submitted to the ASVSpoof2015 Challenge, based on deep neural ...

متن کامل

A cross-vocoder study of speaker independent synthetic speech detection using phase information

Current speaker verification systems are vulnerable to advanced speech manipulation techniques such as voice conversion and speaker adaptation for TTS systems. Effective anti-spoofing systems that allow the discrimination between human and synthetic impostors have been developed. However, many of them still present two main drawbacks: speaker dependency and, more importantly, counterfeiting tec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017